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Abstract

Temperature modulated differential scanning calorimetry (TMDSC) has been applied to study the irreversible melting

kinetics of polyethylene crystals on heating. The apparent heat capacity obtained by TMDSC showed strong dependences on

the applied frequency (modulation period) and on the heating rate. Considering the details of the melting kinetics, the

dependence has been explained by a frequency response function similar to Debye's type with a characteristic time

representing the melting kinetics. From the analysis, it has been con®rmed that the `reversing' heat ¯ow extrapolated to !!0

is correspondent to the `total' heat ¯ow, when re-crystallization and re-organization are not signi®cant during the melting

process. It is further suggested that the characteristic time is related to the superheating effect seen in the `total' heat ¯ow. It is

pointed out that the distribution of the melting points may be estimated by the deconvolution of the melting kinetics from the

`total' heat ¯ow. # 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

We have recently proposed a new analyzing method

of temperature modulated differential scanning calori-

metry (TMDSC) applicable to irreversible transform-

ation kinetics such as polymer crystallization and

melting [1±5]. TMDSC [6±11] utilizes the response

in heat ¯ow, _Q, to a sinusoidal modulation in sample

temperature, Ts, expressed as,

Ts � T s � ~Tse
i�!t��� (1)

_Q � _Q� ~_Qei�!t��� (2)

where T s can be linear heating or cooling, Ts � �t, or

a constant temperature. Our new analyzing method is

based on the behavior of an apparent heat capacity,

�~Ceÿi�, determined from the response as,

�~Ceÿi� � �~C
0 ÿ i�~C

00
(3)

�~C �
~_Q

!~T s

(4)

� � ��ÿ �� ÿ ��ÿ ��0 (5)

where (�ÿ�)0 represents the baseline of the phase

lag. We have suggested that the apparent heat capacity

for the transformation processes should be expressed

as,

�~Ceÿi� � mcp � i
1

!
F0T (6)

where mcp is given by the true heat capacity of sample

and F0T represents the response of the transformation
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process (i.e. temperature derivative of the transforma-

tion rate).

In the case of crystallization of polyethylene [1,2]

and poly(ethylene terephthalate) (PET) [3,4], the

apparent heat capacity showed a frequency response

which indicates a constant F0T independent of fre-

quency:

�~Ceÿi� � A� i
B

!
(7)

where A(>0) and B(D0) are constants. The crystal-

lization of polymers is characterized by the linear

growth of lamellar crystals under high supercooling

(>10 K), and hence the growth of crystals continues

for a small temperature modulation (�0.2 K). Hence,

the response to the temperature modulation should be

given by the modulation of the growth rate. We have

proposed the following expression of the process,

�~Ceÿi� � mcp � i
1

!
Fcryst

d

dt
ln�G=G0� (8)

where Fcryst�> 0� represents the exothermic heat ¯ow

of crystallization and d/dt ln(G/G0) (D0) the tempera-

ture dependence of linear growth rate of crystals.

Utilizing the imaginary part and the exothermic heat

¯ow of crystallization, we have successfully deter-

mined the temperature dependence of growth rate, the

results of which were in good agreement with the

values obtained by direct measurements of growth rate

by microscopy.

In a preceding paper [5], we have also examined

the irreversible melting of PET crystals on heating

(dTs/dt>0). The experimental results showed a strong

dependence of the apparent heat capacity on the

applied frequency of modulation and on the heating

rate, �. The dependence could be approximated

by a frequency response function of Debye's type

as,

�~Ceÿi� ' C � D

1� i!t��� (9)

where C(>0) and D(>0) are constants. In order to

explain the dependence, mcp or F0T in Eq. (6) needs

to be frequency dependent. The true heat capacity,

mcp, can be frequency dependent and undergo a

relaxation process such as glass transition giving a

negative imaginary part of mcp as a consequence of

irreversibility [12,13]. However, since the transforma-

tion is not a relaxation process, the frequency response

should be ascribed to the frequency response of the

melting kinetics to temperature modulation. In the

preceding paper [5], we have modelled the melting

kinetics and obtained the expression of the apparent

heat capacity approximated as,

�~Ceÿi� ' mcp � �ÿFmelt=��
1� i!���� (10)

���� / �x; ÿ1 � x � 0 (11)

where Fmelt�< 0� represents pure endothermic heat

¯ow of melting and �(�) represents the characteristic

time of melting kinetics and can be treated as a

measure of the time required for the complete

melting of crystallites (see Appendix A for the exact

formulas).

Before proceeding to the purpose of the present

paper, we shortly review the characteristics of the

melting of polymer crystals [14] as typically seen

in the melting of PET crystals. Polymer crystals

comprise small crystallites which are quasi-stable

and have a continuous distribution of the non-

equilibrium melting points owing to the distribu-

tions of the thin lamellar thickness and of molecular

weight. The resulting successive melting of the

crystallites is the primary cause of the characteristic

feature of a broad melting peak ('50 K) on heating.

In the theoretical approach in Ref. [5], we have

assumed a quasi-steady state of the irreversible melt-

ing, and calculated the response of the irreversible

melting kinetics to temperature modulation during

heating run (Appendix A). It is noted here that the

irreversible melting under the condition of heating

only, dTs/dt>0, is distinguished from the reversible

processes of melting and crystallization expected

around the melting point for a quasi-isothermal

measurement [15,16]. Owing to the quasi-stable

nature of the crystallites, re-crystallization and/or

re-organization also set in along with the irreversible

melting on heating. This effect has been recognized

as a shift of the melting peak to higher temperature

for slower heating rate. If we utilize the relation

between the apparent heat capacity and the `total'

heat ¯ow suggested in Eq. (10) and the relatively

insensitive nature of crystallization to temperature

modulation, it has been shown that the `total' heat

¯ow can be separated into pure endothermic heat
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¯ow of melting and pure exothermic heat ¯ow of re-

crystallization and re-organization [5].

In the present paper, we examine the irreversible

melting of polyethylene crystals on heating. The

melting of polyethylene crystals has the following

characteristics which differ from the melting typically

seen in PET crystals. Firstly, polyethylene crystals

have a relatively narrow melting peak ('10 K), and

hence it is required to examine the applicability of our

approach assuming a uniform distribution of the melt-

ing points. Secondly, it is known that the re-crystal-

lization and re-organization are not signi®cant if the

sample is crystallized by slow cooling [14,17]. If it is

the case, the `total' heat ¯ow obtained by TMDSC (or

by a conventional DSC) represents true endothermic

heat ¯ow of melting under the condition that the

heating rate is not in¯uenced by the heat ¯ow. Then,

the `total' heat ¯ow should be correspondent with

Fmelt obtained from the frequency response of the

apparent heat capacity suggested in Eq. (10). Lastly,

because of the relatively sharp melting peak, a super-

heating effect is seen in a conventional DSC with fast

heating as the shift of the melting peak to higher

temperature for faster heating rate [17]. This effect

must be related to the characteristic time of melting, � ,

obtained by TMDSC. Those characteristics expected

for the melting of polyethylene crystals needs to be

investigated, in order to con®rm the applicability of

the expression shown in Eq. (10) to the irreversible

melting kinetics of polymer crystals.

2. Experimental

The DSC 2920 Module controlled with Thermal

Analyst 2200 (TA Instruments) and equipped with a

TA RMX Utility was used for all measurements.

Nitrogen gas with a ¯ow rate of 40 ml minÿ1 was

purged through the cell. The phase, � and �, were

calculated from the raw data of sample temperature

and of heat ¯ow.

Modulation period of 24±100 s was examined with

the modulation amplitude adjusted for the condition of

heating only, dTs=dt > 0�~T s < �=!�. As a prelimin-

ary experiment, we have examined different amplitude

of temperature modulation, as shown in Fig. 1. The

apparent heat capacity during the melting process was

affected by the choice of the amplitude larger than

what is given by the above condition. In order to assure

self-consistency, we have employed the condition of

heating only, even though the amplitude becomes

quite small for slower heating rate with shorter mod-

ulation period; the minimum amplitude was 0.012 K

for the heating rate of 0.2 K minÿ1 and the period of

24 s. Since we are concerned with the response to a

periodic modulation of sinusoidal pro®le, Fourier

integral at the applied modulation frequency has been

utilized to calculate the magnitude and phase of the

signals of sample temperature and of heat ¯ow. Hence,

the improvement of the quality of the data can be

expected by the procedure, even though the signal/

noise ratio became worse for such a small amplitude,

as typically shown in Fig. 7(a).

The DSC runs of the present experiment consisted

of cyclic heating and cooling runs with different

modulation periods and heating rates for a single

sample. The polyethylene sample of 4.01 mg was

NIST SRM1475 of Mw�5.2�104 and Mw/Mn�2.9.

The cooling runs were at the rate of 2.0 K minÿ1 from

the melt kept at 1508C, and the heating runs were from

908C at the rate in the range of 0.2±2.0 K minÿ1. In the

data analysis of TMDSC, the apparent heat capacity of

each run with different modulation periods was nor-

malized by the value of molten polyethylene at 1408C
and hence the apparent heat capacity has been auto-

matically calibrated for different modulation periods.

The baseline of the phase lag, (�ÿ�)0, was set to follow

Fig. 1. Plots of the magnitude of the apparent heat capacity during

the melting process of polyethylene crystals by heating runs at

0.6 K minÿ1 with different amplitude of temperature modulation
~T s: (1) 0.020, (2) 0.042, (3) 0.100, (4) 0.300 and (5) 0.700 K. The

modulation period was 28 s. The condition of heating is only

satisfied when ~T s � 0:044 K for the modulation period. The data

points are plotted at the interval of the applied modulation period.
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the change in the degree of crystallinity estimated

from the integration of the endothermic heat ¯ow, as

shown in Fig. 2(c). The choice of the baseline will not

be crucial because the melting peaks in the phase lag

were large enough. The baseline of the endothermic

heat ¯ow was not corrected for the subtraction of the

contribution of heat capacity (the `reversing' heat

¯ow, ÿ��~C), because the `reversing' heat ¯ow con-

tains the information of the endothermic heat ¯ow of

melting itself, as suggested by Eq. (10).

3. Results and discussion

3.1. Frequency and heating rate dependence of the

apparent heat capacity

Fig. 2 shows the endothermic heat ¯ow, F, the

magnitude of the apparent heat capacity, �~C, and

the phase lag, (�ÿ�), on heating at the rate of

0.4 K minÿ1 for different periods of modulation.

Fig. 3 shows the real and imaginary parts of the

apparent heat capacity calculated from �~C and

(�ÿ�) with the appropriate baseline of (�ÿ�)0 as shown

in Fig. 2. Both the real and imaginary parts of the

apparent heat capacity showed strong dependence on

frequency, while the heat ¯ow was not affected by the

change of modulation period. The frequency response

of the apparent heat capacity has been examined for

different heating rates. The frequency dependence at

the same temperature of 131.08C is compared in Fig. 4

where the curved lines represent the ®ttings of the

expected response functions of Eqs. (A.11), (A.16)

Fig. 2. Raw data of TMDSC showing the frequency dependence of

the melting process of polyethylene crystals by heating runs at

0.4 K minÿ1: (a) endothermic heat flow F obtained by a

conventional baseline subtraction without the `reversing' heat

flow, (b) the magnitude of the apparent heat capacity �~C after the

correction for different modulation periods and (c) phase lag (�ÿ�).
The symbols represent the following modulation periods: 28 (*),

40 (*), 52 (~), 76 (&) and 100 s (5). In (c), the lines represent

the baseline, (�ÿ�)0. The data points are plotted at the interval of

the applied modulation period.

Fig. 3. Frequency dependence of (a) the real part �~C
0

and (b) the

imaginary part �~C
00

of the apparent heat capacity obtained by the

data shown in Fig. 2. The symbols represent the following

modulation periods: 28 (*), 40 (*), 52 (~), 76 (&) and 100 s

(5). The value of the apparent heat capacity was normalized by

that of molten polyethylene at 1408C. The data points are plotted at

the interval of the applied modulation period.
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and (A.14) with the adjustable parameters of cp, �0 and

� (Appendix A). In Fig. 4, it is clearly seen that the

peak in the plots of the imaginary parts moves to

slower modulation period for faster heating. This

change indicates that the characteristic time, � ,

becomes shorter for faster heating rate. All those

behaviors have also been con®rmed for the melting

of PET crystals [5] and provided a contrast to the

frequency response in polymer crystallization as

expressed in Eq. (7).

Fig. 5 shows the results of ®tting to Eqs. (A.11) and

(A.16) and to Eq. (A.14) of the real and imaginary

parts of the apparent heat capacity obtained for dif-

ferent heating rates at the temperatures of 1288, 1308
and 1328C. As shown in Fig. 5, the data points could

be ®tted to both the response functions; we need to

examine the dependence on heating rate of the char-

acteristic time, � , to specify which response function

explains the experimental results better. Fig. 6(a)

shows the dependence on heating rate of the charac-

teristic time, � , obtained by a ®tting, such as that

shown in Fig. 4. The dependence can be approximated

as �/�ÿ0.5 at higher temperature around the melting

peak, while the exponent becomes smaller than 0.5 for

lower temperature. Therefore, it seems that the

response functions of f1(!) of Eq. (A.14) explains

the behavior at higher temperatures, while the depen-

dence approaches to f0(!) of Eq. (A.11) at lower

temperatures. The change of the frequency response

function indicates the shift of the superheating depen-

dence of the melting rate coef®cient from a constant

rate to the rate linearly dependent on superheating as

temperature increases. As shown in Fig. 6(b), the

absolute values of � also change with temperature:

shorter � at lower temperatures. The constant melting

rate coef®cient does not mean weaker dependence on

superheating, but it represents a sudden rise of the

melting rate coef®cient just above the non-equilibrium

melting points. Therefore, from the results of the

temperature dependence of � and the change in the

superheating dependence with temperature, it can be

said that the melting process must be more easily

advanced for the crystallites having lower melting

points. The melting of PET crystals examined pre-

viously also showed a behavior similar to it [5]; we

con®rmed the temperature dependence of � and the

shift of the melting kinetics from the linear depen-

dence of f1(!) as shown in Eq. (A.14) to the expo-

nential dependence of f2(!) in Eq. (A.16) with

increasing temperature.

The analysis discussed above proves the applicabil-

ity of our new approach to the melting of polyethylene

crystals having relatively narrower melting peak. In

order to apply the present model, the requirement of a

quasi-steady state must be satis®ed (Appendix B).

The ®rst condition of the requirement in Appendix B

(Eq. (B.20)) can be judged by plotting Lissajous dia-

gram of the modulated heat ¯ow against the modu-

lated sample temperature [15,16], as shown in Fig. 7

where the two cycles of the data during the melting

peak are plotted. Considering the divergence from a

closed loop in Fig. 7(d), for the fastest heating rate of

2.0 K sÿ1, the modulation period of 36 s seems to

exceed the limit. Since the number of data points

Fig. 4. Plots of the real (*) and imaginary (~) parts of the

(normalized) apparent heat capacity during the melting process of

polyethylene against modulation periods. The data at 131.08C were

taken from the heating runs of the following rates: (a) 0.2, (b) 0.6

and (c) 1.5 K minÿ1. The solid and broken lines are the plots of

Eqs. (A.14) and (A.11) (or Eq. (A.16)), respectively, with the

adjustable parameters of cp, �0 and �1 or �0 (or �2).
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within the melting peak becomes smaller for faster

heating rate and for longer modulation period, we had

to choose shorter modulation periods for faster heating

rate as shown in Fig. 4. If we carefully choose the

condition to include the cycles of modulation large

enough, we can apply the present analysis based on the

assumption of the quasi-steady state (Appendix B). It

is further noted that the present analysis does not

require the linear response of the melting kinetics

which should contain higher harmonics of

Eq. (A.4), while the linear response concerns the

apparent heat capacity. In Fig. 8, it is seen that the

non-linearity of the response is not so strong as in the

case of the melting of PET crystals (F2/F1�0.08) [5].

Fig. 5. The real and imaginary parts of the apparent heat capacity such as shown in Fig. 4 taken at (i) 128.0, (ii) 130.0 and (iii) 132.08C for

different heating rates. The symbols represent the following heating rates: 0.2 (*), 0.4 (4), 0.6 (&), 1.0 (5), 1.5 (}) and 2.0 K minÿ1 (�).

The broken and solid lines represent the plots of Eq. (A.11) (or Eq. (A.16))Eq. (A.14), respectively. With the adjustable parameters of cp, �0

and �0 (or �2) or �1, the data points were fitted to the broken lines in (a)±(c) and to the solid lines in (d)±(f).
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3.2. The `reversing' heat flow and the `total' heat

flow

Following the expression of Eq. (10), pure

endothermic heat ¯ow of melting, Fmelt, is related

to the extrapolation of the apparent heat capacity to

!!0. So called `reversing' heat ¯ow of ÿ��~C is

Fig. 6. Logarithmic plots of the characteristic time � chosen for the

fitting such as shown in Fig. 4 against (a) heating rate � and (b)

temperature. In (a), the symbols represent the values determined for

the temperatures of 129.0 (*, *) and 133.08C (&, &), and in (b)

the values were for the heating rate of 0.2 (*, *) and 1.0 K minÿ1

(&, &). The open and filled symbols correspond to the fitting to

Eqs. (A.14) and (A.11) (or Eq. (A.16)) of the apparent heat

capacity, respectively. The slope of the solid line in (a) is ÿ0.5.

Fig. 7. Lissajous diagrams of the modulation component of heat

flow during the melting peak plotted against that of sample

temperature. The two cycles of the modulation are plotted. The

heating rate and the modulation period of TMDSC are the

followings: (a) 0.2 K minÿ1 and 28 s, (b) 0.2 K minÿ1 and 88 s,

(c) 2.0 K minÿ1 and 24 s and (d) 2.0 K minÿ1 and 36 s.

Fig. 8. Plots of the ratio of the amplitude of the first and second harmonics of the response in heat flow, F2/F1 (*), and that of sample

temperature, T2/T1 (�), during the melting peak seen in the heat flow (curved line). The heating rate was 0.6 K minÿ1. The modulation period

was 28 s.
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then expressed as,

ÿ��~C�!! 0� � ÿ�mcp � Fmelt (12)

It is known that re-crystallization or re-organization

accompanying the melting is not signi®cant for the

melting of polyethylene crystals, if the crystals are

prepared by slow cooling [14,17]. In the present

measurements, the cooling rate was 2.0 K minÿ1

and will be slow enough. Therefore, Fmelt determined

from the extrapolation should correspond to the under-

lying endothermic heat ¯ow, F, appearing in the `total'

heat ¯ow expressed as, _Q � ÿ�mcp � F, under the

condition that the heat ¯ow does not signi®cantly

in¯uence the heating rate of the sample temperature.

Then, the `total' heat ¯ow must be correspondent with

the `reversing' heat ¯ow extrapolated to !!0,

_Q � ÿ��~C�!! 0� (13)

Fig. 9 shows the comparison of _Q andÿ��~C�!! 0�
determined from the adjustable parameters of the

®ttings such as shown in Fig. 4. The agreement

between them is satisfactorily and con®rms the rela-

tion of Eq. (13) when the exothermic heat ¯ow of re-

crystallization or re-organization is not signi®cant.

In Fig. 9, the heat capacity, mcp, determined by

the ®tting is also plotted. The heat capacity seems

to be higher in the temperature range of melting than

that of the melt. Such an inverted relationship near

the melting point has been reported by Gaur and

Wunderlich [18] and also seen during crystallization

process [1,2]. If we utilize a light modulated DSC

[19,20,21], we can apply shorter modulation period

(�2 s) and the real part of the apparent heat capacity

levels off because of the 1/! dependence of the second

term of Eq. (10). Hence, the heat capacity, mcp, can

be directly determined by this technique and the

results were similar in its temperature pro®le to the

present results.

3.3. Characteristic time � and the superheating

effect seen in DSC

Fig. 10(a) shows the superheating effect appearing

as the shift of the melting peak to higher temperature

for faster heating rate. If the melting is instantaneous,

the heat ¯ow will be correspondent to the distribution

of the melting points, and the superheating effect will

not be seen. Hence, the superheating effect must be

related to the melting kinetics, especially to the char-

acteristic time, � , obtainable by the present analysis.

From Eq. (B.18) in Appendix B, the shift is actually

expected due to a convolution of the distribution of the

melting points, �0(Tm), with the melting kinetics

represented as _ having a ®nite value of the charac-

teristic time. This type of temperature shift can also be

caused by the response of DSC with a relaxation time

represented as, �DSC�Cp/K, where 1/K is the thermal

resistance of the DSC [22]. Therefore, the heat ¯ow of

Eq. (B.18) needs to be further convoluted with

eÿt=�DSC . We have estimated the value of �DSC�3.7 s

from the tail of the melting peak of Indium. Fig. 10(b)

and (c) show the results considering the convolutions

of �0(Tm) with _� and eÿt=�DSC under the assumption

that the heat ¯ow data of the slowest heating rate

(0.2 K minÿ1) represents the true �0(Tm). In

Fig. 10(b), the constant melting rate coef®cient R0

is assumed and hence the development of the melting

is represented by Eq. (A.10). The characteristic time

�0 of 26 s estimated from Fig. 6(a) was chosen to be

independent of heating rate (Eq. (A.9)). On the other

hand, in Fig. 10(c), the linear dependence on super-

cooling (Eq. (A.13)) is assumed and the characteristic

time was chosen to satisfy the heating rate dependence

of Eq. (A.12). It is noted that the convolution with

Fig. 9. Plots of the `total' heat flow _Q (thick line) and the

`reversing' heat flow (thin lines) obtained with the modulation

periods of 24±100 s for the heating rate of 0.4 K minÿ1. Symbols

represent the `reversing' heat flow extrapolated to !!0,

ÿ�[mcp��H�0], (*, 4) and the true heat capacity mcp, (&, })

determined by the fitting to Eqs. (A.14) and (A.11) (or Eq. (A.16))

of the apparent heat capacity, respectively. The heat flow was

normalized by the `total' heat flow of molten polyethylene at 1408C.
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eÿt=�DSC did not signi®cantly in¯uence the results

because the relaxation time of DSC is much shorter

than the characteristic time of the melting kinetics.

Both the plots in Fig. 10(b) and (c) well reproduce the

range of temperature shift of the melting peak, but the

agreement of the pro®le of melting endotherm with the

experimental results is not satisfactorily. In the calcu-

lation, we have assumed a single characteristic time to

make the convolution, but it is apparent from Fig. 6(b)

that the characteristic time undergoes a substantial

change with temperature. If the change in � is con-

cerned, Eq. (B.18) is not applicable, and hence further

study will be required on this subject.

4. Conclusion

With the apparent heat capacity of complex quan-

tity obtained by TMDSC, we have examined the

irreversible melting kinetics of polyethylene crystals

on heating. Considering the quasi-stable nature of

polymer crystals and the distribution of the non-equi-

librium melting points, we have suggested the fre-

quency response functions similar to Debye's type

with the characteristic time being dependent on heat-

ing rate. The experimental data showed strong depen-

dences on frequency and on heating rate. The

dependences have been analyzed by the response

functions with the characteristic time describing the

melting kinetics. It is further suggested that the appar-

ent heat capacity is related to the underlying heat ¯ow

of melting; namely, the `reversing' heat ¯ow extra-

polated to !!0 corresponds to the underlying heat

¯ow of melting. In the case of polyethylene, since re-

crystallization and re-organization are not signi®cant

for the crystals formed on slow cooling, it has been

con®rmed that the `total' heat ¯ow representing the

heat ¯ow of melting actually corresponds to the

extrapolated `reversing' heat ¯ow. The agreement

supports the applicability of our new approach. When

re-crystallization and re-organization become appre-

ciable as in the case of poly(ethylene terephthalate),

we are able to separate the endothermic heat ¯ow of

melting from the exothermic heat ¯ow of re-crystal-

lization and re-organization, utilizing the difference in

the sensitivity of those processes to temperature mod-

ulation [5]. We have also suggested the relationship

between the characteristic time determined by

TMDSC and a temperature shift of the melting peak

for faster heating rate, known as superheating effect.

Utilizing the relationship, it may be possible to esti-

mate the distribution of the melting points from the

endothermic heat ¯ow of melting by the deconvolu-

tion of the melting kinetics. This technique may also

be applicable to the purity analysis of other non-

polymeric systems.

Fig. 10. (a) Plots of endothermic heat flow divided by heating rate,

F=�, during the melting process of polyethylene crystals for

different heating rates of 0.2, 0.4, 0.6, 1.0, 1.5, 2.0, and

3.0 K minÿ1. Temperature modulation was not applied. (b)

Convolution of an initial distribution of the melting points, �(0,

Tm), approximated by ÿF=���H� of 0.2 K minÿ1 with the

development of the melting for the constant melting rate coefficient

of Eq. (A.10) with a characteristic time of 26 s. The heating rate is

0.2, 0.4, 1.5 and 3.0 K minÿ1. (c) The convolution for a linear

dependence of the melting rate coefficient on superheating

(Eq. (A.13)). The heating rate and the corresponding characteristic

time defined by Eq. (A.12) are (0.2, 100), (0.4, 71), (1.5, 37) and

(3.0, 26) in K minÿ1 and s.
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Appendix A

Modelling of the melting kinetics of polymer
crystals

We brie¯y summarize the modelling suggested in

the preceding paper [5]. In order to model the melting

process of an aggregate of crystallites having a dis-

tribution of the melting points, we consider the frac-

tion of crystallites, �(t, Tm) dTm, having the melting

temperature in the range from Tm to Tm�dTm. The

total crystallinity, �(t), is then expressed by the frac-

tions as,

��t� �
Z1
0

dTm��t; Tm� (A.1)

The change in the fraction, � (t, Tm), is described by

the total melting rate coef®cient, R, of the fraction as,

���t; Tm� � ��0; Tm�exp ÿ
Z�t

0

R dt0

24 35 (A.2)

The endothermic heat ¯ow of melting, Fmelt(t), is

given by the time derivative of the total crystallinity

multiplied by the enthalpy change, �H, of the system

as,

Fmelt�t� � �H
d�

dt
(A.3)

In order to calculate the steady response in heat ¯ow,

we suppose a hypothetical situation of a uniform

distribution of the initial fractions, � (0, Tm)��0.

For the uniform distribution, the response of heat ¯ow

to a sinusoidal modulation of temperature should be in

a steady state and can be represented by Fourier series

expressed as,

Fmelt�t� � Fmelt � F0T�!�~T se
i!t � . . . (A.4)

Fmelt � ÿ��H�0 (A.5)

F0T�!�~T s � ��0

Z1
ÿ1

dt eÿi!tFmelt�t� (A.6)

Hence, the response of the melting kinetics, F0T�!�, is

given by Fourier transform of the modulated heat

flow of melting, Fmelt(t), at the applied modulation

frequency, ! (Eq. (B.6) in Appendix B). Here, it is

reminded that the apparent heat capacity of complex

quantity is defined as a coefficient of the change in

temperature in the expression of heat flow as,

_~Qei�!t��� � ÿ�~Ceÿi� d

dt
~T se

i�!t��� (A.7)

and hence the contribution of the melting kinetics,

f(!), to the apparent heat capacity ��~Ceÿi� � mcp�
f �!�� is given by,

f �!� � i

!
F0T�!� (A.8)

as shown in Eq. (6).

The modulation in temperature in¯uences the melt-

ing rate coef®cient, R(�T), being a function of super-

heating, �T(�TsÿTm), and consequently the time

development of �(t, Tm). Assuming a linear expansion

of R(�T) and � (t, Tm) about temperature modulation

of small amplitude, we can calculate the response,

F0T�!�, and evaluate the contribution of the kinetic

response to the apparent heat capacity, f(!). We have

examined three different dependences on superheating

of the melting rate coef®cient: (1) constant melting

rate coef®cient, R0, (2) linear dependence, R1�a�T,

and (3) exponential dependence, R2/ec�T. The melt-

ing kinetics of each case is described by a character-

istic time, � , which can be dependent on heating rate,

�. The calculated results are summarized as follows.

(i) Constant melting rate coef®cient: R0

�0 � 1=R0 (A.9)

���t� � �0exp ÿ�t

�0

� �
(A.10)

f0�!� � �H�0

1� i!�0

(A.11)

(ii) Linear dependence: R1�a�T

�1 � 1

2��

� �1=2

(A.12)

���t� � �0exp ÿ �t

2�1

� �2
 !

(A.13)
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f1�!� � �H�0

!�1

(
eÿ�!�1�2

�
Z!�1

0

ex2

dxÿ i

���
�
p
2
�1ÿ eÿ�!�1�2�

9=;
(A.14)

The frequency response of f1 is similar to that of f0
as a function of !� , as shown in Fig. 5.

(iii) Exponential dependence: R2/ec�T

�2 � 1

�c
(A.15)

�(�t): nearly stepwise at �t��2

f2�!� ' �H�0

1� i!�2

(A.16)

As shown above, the melting kinetics, namely the

change in the crystallinity of a fraction, �(�t), is well

described by the characteristic time, � , which is

dependent on the heating rate, �, as �/�x with

ÿ1�x�0. It is also noted that, from Eqs. (A.5),

(A.11), (A.14) and (A.16), we can con®rm the rela-

tionship between the underlying endothermic heat

¯ow and the apparent heat capacity, explicitly shown

in Eq. (10).

Appendix B

Necessary condition for the quasi-steady state
approximated by a uniform distribution of the
melting points, �0(Tm) (��(0,Tm))��0

In a general expression of the modulated heat ¯ow,

Fmelt(t), with the change in �0(Tm), both of the under-

lying heat ¯ow, Fmelt�t�, and the modulation compo-

nent, F0T�t; !�, must be time (temperature) dependent,

and the heat ¯ow is expressed as,

Fmelt�t� � Fmelt�t� � F0T�t; !�~Tse
i!t � . . .

(B.1)

We consider Fourier transform of Fmelt(t) expressed as,

G�!0� �
Z1
ÿ1

dt eÿi!0tFmelt�t� � G�!0�

� ~T sG
0
T�!0 ÿ !; !� � . . . (B.2)

G�!0� �
Z1
ÿ1

dt eÿi!0tFmelt�t� (B.3)

G0T�!0; !� �
Z1
ÿ1

dt eÿi!0tF0T�t; !� (B.4)

In a particular case of the uniform distribution of �0

(Tm)��0, the melting kinetics is in steady state, and

hence Fmelt and F0T�!� keep constant values indepen-

dent of time. Then, Fourier transform of the heat ¯ow

will be represented as,

G�!0� � Fmelt��!0� � ~TsF
0
T�!���!0 ÿ !� � . . .

(B.5)

Therefore, F0T�!� is given by Fourier transform of

Fmelt at the modulation frequency ! as,

~T sF
0
T�!� � Fmelt

G�!�
G�0� � Fmelt

G0T�0; !�
G�0�

� �
(B.6)

In the present analysis, we have assumed the steady

state of the melting kinetics with the uniform distribu-

tion of the melting points, �0(Tm)��0. Since we are

concerned with the irreversible melting on heating,

namely an irreversible transformation process, the

process cannot be in the steady state in the long

run with the actual distribution of the melting points,

and hence we must consider whether the process

can be approximated as a quasi-steady state or not.

In the present case of the successive melting of crystal-

lites with a broad melting peak, the assumption of

the quasi-steady state is justi®ed, if the pro®le of

G0T�!0; !� in the plot against !0 is not in¯uenced

by the applied frequency. This condition is expressed

as,

G0T�!0; !� � g�!0�h�!� (B.7)

If it is the case, the frequency dependence of

f �!� � i=!F0T�t; !� is determined by 1/! h(!) which

corresponds to the results for the case of �0(Tm)��0,

as shown below.

In order to calculate Fourier transform of

Eqs. (B.2)±(B.4), we need the detailed expression

of Fmelt(t). Utilizing Eq. (A.3), Fmelt(t) is given by

the melting rate coef®cient, R(�T), and the crystal-
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linity of fractions, � (t,Tm), as,

Fmelt�t� � �H
d

dt

Z1
0

dTm��t; Tm� (B.8)

� ÿ�H

Z1
0

dTmR��T���t; Tm�

When a temperature modulation is applied, we need to

consider the response of R(�T) and �(t, Tm). If the

modulation amplitude is small enough, we can reason-

ably assume an expansion about the modulation com-

ponents represented as,

R��T� � R���t� � R0���t�~T se
i!t0�ei!�t ÿ 1�

� . . . (B.9)

���t; t0� � �0�t0� ��t� (B.10)

where R0 represents the temperature derivative of R. In

those expressions, the sample temperature, Ts, and the

melting points, Tm, have been changed to variables t

and t0 having the dimension of time, and �t�tÿt0
represents the difference which is a measure of the

superheating �T,

Ts � �t � ~T se
i!t (B.12)

Tm � �t0 � ~T se
i!t0 (B.13)

�T � Ts ÿ Tm � ��t � ~T se
i!t0�ei!�t ÿ 1�

(B.14)

Accordingly, Fourier transform, G(!0), is represented

as,

G�!0� � i!0�H

Z1
ÿ1

dt eÿi!0t
Z1
1

dTm��t; Tm�

� i!0�H

Z1
0

dt0�� � i!~T se
i!t0�eÿi!0t0�0�t0�

�
Z1
ÿ1

d��t�eÿi!0�t ��t� (B.15)

Fourier transform of the underlying heat ¯ow Fmelt is

then given as,

G�!0� � �H

Z1
0

�dt0eÿi!0t0�0�t0�i!0

�
Z1
ÿ1

d��t�eÿi!0�t ��t�

� �HG�0�!0�G�_ 
�!0� (B.16)

Here, G�0 represents Fourier transform of �0(t0) and

G _ 
Fourier transform of the time derivative of  

de®ned as,

 ��t� � 1 for �t < 0

e
ÿ
R �t

0
dxR��x�

for �t > 0

�
(B.17)

Eq. (B.16) means that the underlying heat ¯ow,

Fmelt�t�, is given by the convolution of �0(t0) and

 
�_��t� represented as,

Fmelt�t� � �H

Z1
0

�dt0�0�t0� �_�t ÿ t0� (B.18)

On the other hand, Fourier transform of the modula-

tion component, G0T�!0; !�, is given as,

G0T�!0; !� � i�!0 � !��HG�0�!0�

�
(

i!

�
G �!0 � !�

ÿ
Z1
0

d��t�eÿi�!0�!��te
ÿ
R �t

0
dxR��x�

�
Z�t

0

dxR0��x��ei!x ÿ 1�
9=; (B.19)

Now, we can discuss the condition for G0T�!0; !� given

by Eq. (B.7). The condition is satisfied when G�0
�!0�

becomes negligible outside the range of !0�! and

!0��1, as we see with the two examples of the

 ��t� �
1 for �T < 0

e
ÿ
R �t

0
dxR��x�

1ÿ ~T se
i!t0
R�t

0
dxR0��x��ei!x ÿ 1� � . . .

h i
for �t > 0

(
(B.11)
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melting rate coefficient of R0 and R1(�T) in the

following. The condition of the quasi-steady state is

then expressed in the following manner when trans-

lated to the corresponding temperature range,

(Temperature range in which the change in �0(Tm)

is negligible)

� � � �period of modulation� (B.20)

and

� 2��� (B.21)

4.1. Constant R0 for �T>0

G0T�!0; !� is calculated as,

G0T�!0; !� �
i!

�
�HG�0�!0� ÿ1

1� i�!0 � !��0

(B.22)

Eq. (B.22) can be approximated as the following form

satisfying the condition of Eq. (B.7), when the fre-

quency range concerned satis®es the condition of

!0�! or (!0�) (!�)�1,

i

!
G0T�!0; !� � g0�!0� 1

1� i!�0

(B.23)

The dependence on ! shown in Eq. (B.23) is actually

correspondent to that of Eq. (A.11) obtained under the

assumption of �0(Tm)��0.

4.2. R�a�T

When the frequency range satis®es !0�!,

Eq. (B.19) can be approximated as,

G0T�!0; !� �
i!

�
�HG�0�!0� 1

!�1

� !0�1 � i

���
�
p
2
ÿ ieÿ�!�1�2

���
�
p
2
ÿ i

Z!�1

0

ex2

dx

0@ 1A8<:
� �1� 2�!0���!���

)
(B.24)

If the frequency range further satis®es (!0�) (!�)�1

(namely, !0��1), G0T�!0; !� can be modi®ed to satisfy

the condition of Eq. (B.7) as,

i

!
G0T�!0; !� � g1�!0� 1

!�1

eÿ�!�1�2
Z!�1

0

ex2

dx

24
�ÿi

���
�
p
2
�1ÿ eÿ�!�1�2�

�
(B.25)

Its dependence on ! also corresponds to that of

Eq. (A.14).
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